

Reaccredited 'A+ 'Grade by NAAC(CGPA:3.68/4.00)
College with Potential for Excellence by UGC
DST-FIST Supported & STAR College Scheme by DBT

Faculty of Science

Bachelor of Science (B.Sc.)

SUBJECT: NANOTECHNOLOGY

B.Sc. II Semester Paper-Major

INTRODUCTION TO NANOTECHNOLOGY

Course Outcome

CLO	Course Outcomes	Cognitive
No.		Level*
CLO -I	Students will be able to solve Schrodinger equations for various problems	U, R
CLO -II	Students will be able to calculate surface area to volume ratio of given materials	U, R,
CLO -III	Students will be able to classifydifferent nanostructures and calculate their density of states.	R, U, Ap, An, E
CLO -IV	Students will have a clear understanding about variation of different properties with size.	R, U, An, Ap, E, C
CLO -V	Students will understand different techniques used in nanobiotechnology.	U, R

Reaccredited 'A+ 'Grade by NAAC(CGPA:3.68/4.00)
College with Potential for Excellence by UGC
DST-FIST Supported & STAR College Scheme by DBT

Credit and Marking Scheme

	Credits	Ma	rks	Total Marks
	Credits	Internal	External	1 Otal Warks
Theory	4	40	60	100
Practical	2	40	60	100
Total	6		200	

Evaluation Scheme

		Marks
	Internal	External
Theory	3 Internal Exams of 20 Marks	1 External Exams
	(During the Semester)	(At the End of Semester)
	(Best 2 will be taken)	
Practical	3 Internal Exams	1 External Exams
	(During the Semester)	(At the End of Semester)
	(Best 2 will be taken)	

Reaccredited 'A+ 'Grade by NAAC(CGPA:3.68/4.00)
College with Potential for Excellence by UGC
DST-FIST Supported & STAR College Scheme by DBT

Content of the Course

Theory

No. of Lectures (in hours per week): 4.5 Hrs. per week **Total No. of Lectures:** 60 Hrs.+ Tutorials (5 Hrs.)

Maximum Marks: 60

Units	Topics	No. of Lectures
Ι	Quantum Theory of Nano-materials-II	13
İ	Formalism of Schrodinger Equation: Time independent &	
İ	time independent Schrodinger equation and their general solution	
İ	, Solution of Schrodinger equation for particle in a box , One-	
İ	Dimensional Rectangular Barrier and Concept of	
İ	Tunneling(Theoretical explanation).	
II	Area & Volume of Nano-materials	13
İ	Inter-conversion of units. Introduction to surface area to	
	volume ratio and aspect ratio. Difference between surface area	
	to volume ratio of bulk materials and nano-materials (sphere,	
İ	hollow sphere, rods, hollow rods, cubes and hollow cubes) and	
1	related numerical problems. Difference in aspect ratio of bulk	
İ	wire and nanowire and related numerical problems. Nano-	
l	materials and wavelength of light.	
III	Classification of Nano-materials	13
	Introduction to dimensional growth process. Classification of	
İ	nano-materials into 0D, 1D, 2D and 3D. Relationship between	
İ	dimension and shape of nano-materials (Quantum dots, quantum	
İ	wells Quantum wires). Introduction to size effect on electronic and	
l	optical properties, Concept of Quantum Confinement, Density of	
İ	states in 3D, 2D, 1D and 0D solid.	
	states in 3D, 2D, 1D and 0D solid.	

Reaccredited 'A+ 'Grade by NAAC(CGPA:3.68/4.00)
College with Potential for Excellence by UGC
DST-FIST Supported & STAR College Scheme by DBT

IV	Novel Properties of Nanomaterials and Related Theoretical	13
	Background	
	Classification of Nano-Particles: Organic NPs, Carbon-based	
	NPs, Inorganic NPs, Size and shape dependent optical,	
	emission, electronic, transport, photonic, refractive index,	
	dielectric, mechanical, magnetic, Catalytic and photo-catalytic	
	properties, non-linear optical properties; Mie theory (Conceptual	
	explanation)	
V	Terminology and Techniques in Nanobiotechnology	13
	Definitions, Scopes and applications of Biotechnology, Nano-	
	biotechnology, Bio-molecular Nanotechnology, Biomedical-	
	Nanotechnology, Green-Nanotechnology. Fundamentals and	
	introduction to techniques such as mechanical extraction, physical	
	methods of homogenization, centrifugation, dialysis,	
	electrophoresis and chromatography techniques for purification	
	of biomolecules.	

References

Test/Reference Books:

- 1. Edward L. Wolf, Nanophysics and Nanotechnology: An Introduction to Modern Concepts in Nanoscience, Wiley-VCH (2006).
- 2. Arthur Beiser, concepts of modern physics (sie), 7th edn
- 3. Nanotechnology: Principles and Practices S. K. Kulkarni (3rd Edition)
- 4. Quantum Mechanics Concept and Applications by Nouredine Zettili

Reaccredited 'A+ 'Grade by NAAC(CGPA:3.68/4.00)
College with Potential for Excellence by UGC
DST-FIST Supported & STAR College Scheme by DBT

Web Links:

1) NPTEL: Quantum Mechanics https://nptel.ac.in/courses/115/101/115101107/

2) NPTEL: Introduction to Nanomaterials https://nptel.ac.in/courses/118/104/118104008/

3) NPTEL: Nanostructuresd Materials https://nptel.ac.in/courses/118/102/118102003/

List of Experiments

- 1. To measure the resistivity of semiconductor crystal with temperature by four -probe method.
- 2. To determine the type (n or p) and mobility of semiconductor material using Hall-Effect System
- 3. To determine the Energy Band gap (Eg) of silicon Crystal using energy band gap measurement setup
- 4. Calculation of total number of atom's and surface atom's present in a nanoparticle of a given size. (Theoretical)
- 5. Calculation of surface area to volume ratio of 1D solid and hollow nanostructure. (Theoretical)
- 6. Study of crystal systems
- 7. Preparation of stock solutions and Buffer Solution, Stock Solution, such as Acetate Buffer pH 4.8, phosphate buffer pH 9.6, Phosphate Buffer saline pH 7.2,

